Abstract
In contrast to the mitochondrial proton-translocating NADH–quinone oxidoreductase (complex I), which consists of at least 43 different subunits, the internal rotenone-insensitive NADH–quinone oxidoreductase (Ndi1) of Saccharomyces cerevisiae is a single polypeptide enzyme. The NDI1 gene was stably transfected into the human embryonal kidney 293 (HEK 293) cells. The transfected NDI1 gene was then transcribed and translated in the HEK 293 cells to produce the functional enzyme. The immunochemical and immunofluorescence analyses indicated that the expressed Ndi1 polypeptide was located to the inner mitochondrial membranes. The expression of Ndi1 did not alter the content of existing complex I in the HEK 293 mitochondria, suggesting that the expressed Ndi1 enzyme does not displace the endogenous complex I. The NADH oxidase activity of the NDI1-transfected HEK 293 cells was not affected by rotenone but was inhibited by flavone. The ADP/O ratios coupled to NADH oxidation were lowered from 2.4 to 1.8 by NDI1-transfection while the ADP/O ratios coupled to succinate oxidation (1.6) were not changed. The NDI1-transfected HEK 293 cells were able to grow in media containing a complex I inhibitor such as rotenone and 1-methyl-4-phenylpyridinium ion. The potential usefulness of incorporating the Ndi1 protein into mitochondria of human cells is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.