Abstract

The present work was conducted to study how restoration of perturbed oxidant and antioxidant homeostasis is achieved in the UV-C radiation exposed cells of cyanobacterium Nostoc muscorum Meg1. Exposure to varying doses of UV-C radiation (6, 12, 18 and 24 mJ/cm2) showed damage to ultrastructures especially cytoplasmic membrane, cell wall and organisation of thylakoid membranes of the cyanobacterium under transmission electron microscope (TEM). All doses of UV-C exposure significantly induced most of the enzymatic antioxidant {catalase, superoxide dismutase (SOD) and glutathione reductase (GR)} activities, their protein levels (western blot analysis) and mRNA levels (real time PCR analysis) within the first hour of post UV-C radiation incubation period. In the same way, contents of many non-enzymatic antioxidants such as ascorbic acid, reduced glutathione, proline, phenol and flavonoids were also augmented in response to such UV-C radiation exposure. Although notable increase in ROS level was only seen in cultures treated with 24 mJ/cm2 UV-C exposure which also registered increase in protein oxidation (22%) and lipid peroxidation (20%), this boost in both enzymatic and non-enzymatic antioxidants was significant in all radiation exposed cells indicating cell’s preparation to combat rise in oxidants. Further, albeit all antioxidants increased considerably, their levels were restored back to control values by day seventh re-establishing physiological redox state for normal metabolic function. The combined efficiency of the enzymatic and non-enzymatic antioxidants were so effective that they were able to bring down the increase levels of ROS, lipid peroxidation and protein oxidation to the physiological levels within 1 h of radiation exposure signifying their importance in the defensive roles in protecting the organism from oxidative toxicity induced by UV-C radiation exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.