Abstract

Nanostructured Zn1−xMgxO (x = 0–0.04) thin films were deposited on a glass substrate through the sol–gel dip coating. X-ray diffraction indicates the films exhibited a hexagonal wurtzite structure with maximum intensity at (1 0 1) plane. The intensity of the diffraction peak decreased with increasing the Mg doping concentration. The crystallite size varied as a function of the increase in Mg doping concentration. The deposits showed a nanograin structure for pure ZnO, which changes in the presence of Mg content, and elemental composition was confirmed by using energy-dispersive spectra. Optical analysis showed a significant increase in transmittance from 80 to 90% in the visible range and a decrement in the optical bandgap energy from 3.305 to 3.261 eV with an increase in Mg doping. Photoluminescence spectra showed there was a quenching of near band edge emission with doping concentration and a red emission for Zn0.96Mg0.04O film. The color coordinates of the deposits were in the nearly white light region, showing the maximal white light emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.