Abstract
Despite good evidence for a genotoxic potential of ochratoxin A (OTA), the mechanism of OTA-induced genotoxicity (direct or indirect?) is still unclear. This calls for a further characterization of OTA-related DNA damage, and investigations of factors that may modulate dose-effect relationships in cells.Since bladder epithelium is a target tissue for the toxicity of OTA, its effects were studied in cultures of human bladder carcinoma (H5637) cells. Cytotoxicity of OTA, assessed by Neutral red (NR) uptake or Alamar-Blue assay, is concentration- and time-dependent: Upon 24 h treatment of 5637 cells, NR uptake is reduced by 50% with OTA concentrations of ≥0.2 microM, but not with 3 h treatment of the cells. Since cytotoxicity of OTA was not affected by addition of xenobiotic metabolizing enzymes (S-9 mix), it appears to be unrelated to biotransformation of the mycotoxin. Also, addition of S-9 mix did not significantly affect the genotoxicity of OTA as studied by alkaline single cell gel electrophoresis (Comet assay). DNA damage was detectable after 3 h treatment of cells at OTA concentrations between 0.1 and 1 microM, and increased further at higher concentrations. The magnitude of OTA-induced DNA damage did not increase with longer treatment times (18, 24 h), probably due to repair processes in the cells. Repair of OTA-induced lesions is quite efficient in kidney (Arch Toxicol 2002, 75, 734-741) and in porcine bladder cells (Föllmann and Lebrun, 2005, Mycotoxin Research, this volume). Interestingly, the genotoxicity of OTA is modulated by the pH of the culture medium, with higher damage at pH 5 compared to pH 7.5. In line with this, uptake studies with tritiated OTA show a higher cellular accumulation of the mycotoxin at pH 5 than in buffer of pH 7.5. Thus, bladder cells exposed to OTA in slightly acidic urine (which facilitates reabsorption) may be at higher risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.