Abstract

Viruses actively reprogram the metabolism of the host to ensure the availability of sufficient building blocks for virus replication and spreading. However, relatively little is known about how picornaviruses-a large family of small, non-enveloped positive-strand RNA viruses-modulate cellular metabolism for their own benefit. Here, we studied the modulation of host metabolism by coxsackievirus B3 (CVB3), a member of the enterovirus genus, and encephalomyocarditis virus (EMCV), a member of the cardiovirus genus, using steady-state as well as 13C-glucose tracing metabolomics. We demonstrate that both CVB3 and EMCV increase the levels of pyrimidine and purine metabolites and provide evidence that this increase is mediated through degradation of nucleic acids and nucleotide recycling, rather than upregulation of de novo synthesis. Finally, by integrating our metabolomics data with a previously acquired phosphoproteomics dataset of CVB3-infected cells, we identify alterations in phosphorylation status of key enzymes involved in nucleotide metabolism, providing insight into the regulation of nucleotide metabolism during infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.