Abstract
Using the nonlinear differential equations governing the motion of a fluid-filled and prestressed long thin elastic tube, the propagation of nonlinear waves near the marginal state is examined through the use of reductive perturbation method. It is shown that the amplitude modulation near the marginal state is governed by a generalized nonlinear Schrödinger (GNLS) equation. Some exact solutions, including oscillatory and solitary waves of the GNLS equation are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.