Abstract

Superficial layers of the dorsal horn receive a dense plexus of nerve fibers immunoreactive to pituitary adenylate cyclase activating polypeptide (PACAP). In vivo experiments were conducted in the mice to evaluate the effects of PACAP-38, herein referred to as PACAP, PACAP receptor antagonist PACAP(6-38) and PACAP-antiserum on nociceptive behaviors induced by radiant heat, intrathecally administered N-methyl-D-aspartate (NMDA) or intraplantarly administered formalin. PACAP (0.05-0.5 microg) dose-dependently decreased the paw-withdrawal latencies induced by thermal stimulation and enhanced the aversive licking and biting behaviors induced by intrathecally injected NMDA. Pretreatment with the PACAP receptor antagonist PACAP(6-38) (0.5-2 microg) or PACAP-antiserum (1:500-2,000 dilution) dose-dependently attenuated the second phase, but not the first phase, of nociceptive responses to formalin. Next, the effects of PACAP on NMDA- and kainate-induced currents evoked in single dorsal horn neurons were studied. Whole-cell patch recordings were made from superficial dorsal horn neurons of spinal cord slices from 14- to 20-day-old mice. PACAP at the concentrations of 100 and 200 nM, which caused no significant change of holding currents, increased NMDA-but not kainate-induced currents in superficial dorsal horn neurons. Our results suggest that exogenously applied PACAP sensitizes the dorsal horn neurons to formalin stimulation, and facilitates NMDA receptor-mediated nociceptive response. As a corollary, PACAP, which may be released from primary afferent fibers potentiates nociceptive transmission to the dorsal horn by interacting primarily with NMDA receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call