Abstract
The concentration of 15-deoxy Delta(12,14)PGJ(2) (15dPGJ(2)) and its effects on nitric oxide generation and neutral lipid in embryos from control and neonatal streptozotocin-induced (n-stz) diabetic rats during organogenesis were investigated. 15dPGJ(2) is produced in embryos during organogenesis, and its production is lower in embryos of n-stz diabetic rats than in embryos from control rats. Nitrate and nitrite concentrations were higher in embryos from n-stz diabetic rats and were reduced in the presence of 15dPGJ(2) both in embryos from control and diabetic rats. Thus, decreased 15dPGJ(2) concentrations in embryos from n-stz diabetic rats may be related to the high nitric oxide concentrations found in those embryos. Exogenous 15dPGJ(2) decreased cholesterol and cholesteryl ester concentrations in embryos from control and n-stz diabetic rats, and reduced triacylglycerol concentrations in control embryos. Incorporation of [(14)C]acetate into lipids showed decreased de novo synthesis of cholesteryl ester and triacylglycerides in embryos from n-stz diabetic rats compared with controls. Exogenous 15dPGJ(2) reduced the incorporation of [(14)C]acetate into triacylglycerides, cholesterol and cholesteryl ester in embryos from both control and n-stz diabetic rats. 15dPGJ(2) is present in embryos during organogenesis, and reduces embryonic nitric oxide production and lipid synthesis. The lower 15dPGJ(2) concentration in embryos from n-stz diabetic rats may result in developmental alterations in this diabetic model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.