Abstract

The effects of pituitary adenylate cyclase-activating peptide (PACAP-38) and vasoactive intestinal polypeptide (VIP) were investigated in the gastric fundus strips of the mouse. In carbachol (CCh) precontracted strips, in the presence of guanethidine, electrical field stimulation (EFS) elicited a fast inhibitory response that may be followed, at the highest stimulation frequencies employed, by a sustained relaxation. The fast response was abolished by the nitric oxide (NO) synthesis inhibitor l- N G-nitro arginine ( l-NNA) or by the guanylate cyclase inhibitor (ODQ), the sustained one by α-chymotrypsin. α-Chymotrypsin also increased the amplitude of the EFS-induced fast relaxation. PACAP-38 and VIP caused tetrodotoxin-insensitive sustained relaxant responses that were both abolished by α-chymotrypsin. Apamin did not influence relaxant responses to EFS nor relaxation to both peptides. PACAP 6-38 abolished EFS-induced sustained relaxations, increased the amplitude of the fast ones and antagonized the smooth muscle relaxation to both PACAP-38 and VIP. VIP 10-28 and [ d-p-Cl-Phe 6,Leu 17]-VIP did not influence the amplitude of both the fast or the sustained response to EFS nor influenced the relaxation to VIP and PACAP-38. The results indicate that in strips from mouse gastric fundus peptides, other than being responsible for EFS-induced sustained relaxation, also exerts a modulatory action on the release of the neurotransmitter responsible for the fast relaxant response, that appears to be NO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.