Abstract
Treatment of mouse spleen cells with specific anti-H-2 antisera augments their natural killer (NK) activity against K562 cells but not against YAC target tumor cells. The same population of natural killer cells was found to lyse K562 as well as YAC target cells, since (a) depletion of YAC reactive NK cells by absorption on YAC monolayers resulted in a concomitant depletion of anti-K562 NK activity of mouse spleen cells, and (b) both K562 and YAC cells could inhibit their own as well as each others lysis in a cross-competition assay. Anti-H-2 antiserum could not induce anti-K562 NK activity in spleen cells previously depleted of NK cells by absorption on YAC monolayers, indicating that alloantiserum does not act by recruiting otherwise nonreactive cells to become cytotoxic toward K562 target cells. In a target-binding assay, K562 binding of NK cells (T-cell-, B-cell-, and macrophage-depleted spleen cells) increased five- to eightfold in the presence of anti-H-2 antiserum whereas YAC cells binding of NK cells was not increased. H-2 antigens per se did not appear to be involved in the alloantisera effect since anti-NK antiserum directed against a non-H-2 antigen selectively expressed on NK cells, showed a similar selective NK enhancing effect. Protein A, a reagent which binds to the Fc region of immunoglobulin molecules, completely blocked the alloantiserum induced augmentation of anti-K562 NK activity, but did not alter basal NK activity. Moreover, the F(ab) 2 fraction of alloantibodies failed to enhance anti-K562 cytotoxic activity of mouse spleen cells, indicating a crucial role for the Fc portion of the alloantibodies attached to the NK cells, in NK augmentation. Utilization of several target cell lines with or without membrane Fc receptors (FcR) revealed that alloantiserum enhanced the lysis of only FcR + target cells. It is proposed that alloantibody-coated NK cells, as a result of a secondary interaction between attached alloantibody and Fc receptors on target cells, interact more readily with the target cells and thereby cause a higher level of lytic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.