Abstract
We investigate the modulation of C60 monolayers on the nanocavity plasmonic (NCP) emission on Au(111) by tunneling electron excitation from a scanning tunneling microscope (STM) tip. STM induced luminescence spectra show not only suppressed emission, but also significant redshift of NCP emission bands on the C60 molecules relative to the bare metal surface. The redshift, together with the bias- and coverage-dependent emission feature, indicates that the C60 molecules act beyond a pure dielectric spacer, their electronic states are heavily involved in the inelastic tunneling process for plasmonic emission. A modified quantum cutoff relation is proposed to explain qualitatively the observed emission feature at both bias polarities. We also demonstrate molecularly resolved optical contrast on the C60 monolayer and discuss the contrast mechanism briefly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.