Abstract

In this study, we tested the hypothesis that intracellular Cl(-) (Cl) regulates the activity of protein kinase C (PKC)-delta and thus the activation of Na-K-Cl cotransport (NKCC1) in a Calu-3 cell line. The alpha(1)-adrenergic agonist methoxamine (MOX) and hypertonic sucrose increased Cl and increased or decreased intracellular volume, respectively, without changing Cl concentration ([Cl(-)](i)). Titration of [Cl(-)](i) from 20-140 mM in nystatin-permeabilized cell monolayers did not affect the baseline activity of PKC-delta, PKC-zeta, or rottlerin-sensitive NKCC1. At 200 mM Cl(-), rottlerin-sensitive NKCC1 was activated, and PKC isotypes were localized predominantly to a particulate fraction. MOX induced a biphasic increase in NKCC1 activity and PKC-delta in activity and particulate localization of PKC-delta and -zeta. Activity of NKCC1 and PKC-delta decreased with increasing Cl from 20 to 80 mM Cl then increased at 140-200 mM Cl apparently as an additive effect to high [Cl(-)](i) levels. Rottlerin inhibited the effects of MOX, which indicates that PKC-delta was required for activation of NKCC1. The results indicate that, in airway epithelial cells, a Cl electrochemical gradient alone is not sufficient to stimulate NKCC1 activity; rather, elevated activity of PKC-delta is necessary. Further, high Cl levels induce a subcellular redistribution of PKC-delta, which results in increased enzyme activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call