Abstract

Progesterone (P4) can be synthesized in both central and peripheral nervous system (PNS) and exerts trophic effects in the PNS. To study its potential effects in the spinal cord, we investigated P4 modulation (4 mg/kg/day for 3 days) of two proteins responding to injury: NADPH-diaphorase, an enzyme with nitric oxide synthase activity, and glial fibrillary acidic protein (GFAP), a marker of astrocyte reactivity. The proteins were studied at three levels of the spinal cord from rats with total transection (TRX) at T10: above (T5 level), below (L1 level) and caudal to the lesion (L3 level). Equivalent regions were dissected in controls. The number and area of NADPH-diaphorase active or GFAP immunoreactive astrocytes/0.1 mm 2 in white matter (lateral funiculus) or gray matter (Lamina IX) was measured by computerized image analysis. In controls, P4 increased the number of GFAP-immunoreactive astrocytes in gray and white matter at all levels of the spinal cord, while astrocyte area also increased in white matter throughout and in gray matter at the T5 region. In control rats P4 did not change NADPH-diaphorase activity. In rats with TRX and not receiving hormone, a general up-regulation of the number and area of GFAP-positive astrocytes was found at all levels of the spinal cord. In rats with TRX, P4 did not change the already high GFAP-expression. In the TRX group, instead, P4 increased the number and area of NADPH-diaphorase active astrocytes in white and gray matter immediately above and below, but not caudal to the lesion. Thus, the response of the two proteins to P4 was conditioned by environmental factors, in that NADPH-diaphorase activity was hormonally modulated in astrocytes reacting to trauma, whereas up-regulation of GFAP by P4 was produced in resting astrocytes from non-injured animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call