Abstract

1. Agonist activation of rat retina muscarinic receptors results in suppression of cyclic AMP (cAMP) generation and enhanced phosphoinositide hydrolysis. 2. Pharmacological manipulations that elevate cAMP or stable analogues of cAMP attenuate the acetylcholine (ACh)-induced enhancement of phosphoinositide hydrolysis. We postulate that cross-talk between adenylate cyclase and phospholipase C signal transducing systems probably exists in rat retina, as has been described for other systems. 3. Intraocular administration of pertussis toxin attenuated the response of both adenylate cyclase and phospholipase C to muscarinic stimulation, suggesting that some retinal muscarinic receptors are apparently coupled to their effector systems via pertussis toxin sensitive G proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call