Abstract

The potential for plant-origin essential oils to modulate rumen functions for reducing bio-hydrogenation of fatty acids and methane production has been a significant area of research in recent times. This study investigated the effects supplementation of garlic (Allium sativum) essential oils have on in vitro bio-hydrogenation of fatty acids, methanogenesis and fermentation characteristics of total mixed ration in buffalo with the aim of enhancing conjugated linoleic acid (CLA) content in animal products as well as reducing environmental pollution. Allium sativum (AS) essential oils were examined at four levels [0 (Control), 33.33 µL (AS-1), 83.33 µL (AS-2) and 166.66 µL (AS-3) per litre of buffered rumen fluid] in a radio-frequency based automatic gas production system (ANKOM-RF). Two bottles per treatment per run over two incubation runs were undertaken to gain representative results. Oats hay and concentrate mixture (1:1) was used as a substrate (500 ± 5 mg) and incubated with 60 mL of buffered rumen fluid in 250 mL ANKOM bottles fitted with automatic an gas recording system at 39 °C for 24 h, following standard in vitro gas production protocols. The results demonstrated a reduction (p < 0.01) in lipid bio-hydrogenation, measured by lowered saturated fatty acids and enhanced unsaturated fatty acids on the supplementation of AS essential oils, irrespective of the dose levels. Moreover, the increased (p < 0.01) production of trans vaccenic (trans C18:1) acid (TVA) following graded dose supplementations of the AS essential oils increased the production of conjugated linoleic acids (CLA) in animal products. Although, reduced methane production (p < 0.01) was evidenced, the decrease in total gas production and feed digestibility (TDDM) demonstrated the strong antimicrobial properties of AS at all dose levels. The study reveals that the Allium sativam (Garlic) essential oils have the potential to be an agent for the reduction of the rumen biohydrogenation of fatty acids and methanogenesis. However, in vivo examination is necessary to validate the findings and confirm its suitability for use as an additive to enhance nutraceutical and organoleptic properties in animal products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call