Abstract

Here we showed that bivalency approach is effective in modulating multidrug resistance protein 1 (MRP1/ABCC1)-mediated doxorubicin (DOX) and etoposide (VP16) resistance in human 2008/MRP1 ovarian carcinoma cells. Flavonoid dimers bearing five or six ethylene glycol (EG) units with 6-methyl (4e, 4f) or 7-methyl (5e, 5f) substitution on the ring A of flavonoid dimers have the highest modulating activity for DOX against MRP1 with an EC(50) ranging from 73 to 133 nM. At 0.5 microM, the flavonoid dimer 4e was sufficient to restore DOX accumulation in 2008/MRP1 to parental 2008/P level. Lineweaver-Burk and Dixon plot suggested that it is likely a competitive inhibitor of DOX transport with a K(i) = 0.2 microM. Our data suggest that flavonoid dimers have a high affinity toward binding to DOX recognition site of MRP1. This results in inhibiting DOX transport, increasing intracellular DOX retention, and finally resensitizing 2008/MRP1 to DOX. The present study demonstrates that flavonoid dimers can be employed as an effective modulator of MRP1-mediated drug resistance in cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.