Abstract

Huntington’s disease (HD) is a neurodegenerative disorder caused by a genetic abnormality in the huntingtin gene that leads to a polyglutamine repeat expansion of the huntingtin protein. The cleaved polyglutamine expansion of mutant huntingtin (mHTT) protein can form aggregates strongly correlated with HD progression. We have previously shown that the inhibition of mGluR5 using CTEP, a selective negative allosteric mGluR5 modulator, can delay disease progression and reduce in mHTT aggregates in the zQ175 mouse model of HD. This was paralleled by enhanced catalytic activity of Unc-51-like kinase 1 (ULK1), a kinase modulated by mammalian target of rapamycin (mTOR) and key regulator of autophagy initiation. In the present study, we show that CTEP can correct aberrant phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling detected in zQ175 mice that may underlie the enhanced ULK1 activity and activation of autophagy. We also show that CTEP can facilitate cAMP response element-binding protein (CREB)-mediated expression of brain-derived neurotrophic factor (BDNF) to foster neuronal survival and reduce apoptosis. Taken together, our findings provide the molecular evidence for how targeting mGluR5 using a well-tolerated selective NAM can mitigate two critical mechanisms of neurodegeneration, autophagy and apoptosis.

Highlights

  • Huntington’s disease (HD) is an adult-onset, inherited autosomal dominant neurodegenerative disorder caused by a polyglutamine (CAG) repeat expansion in exon 1 that encodes the amino-terminal of the huntingtin protein [1, 2]

  • Chronic Metabotropic glutamate receptor 5 (mGluR5) antagonism normalizes mammalian target of rapamycin (mTOR) activity in zQ175 mice A critical step in autophagy is the formation of the autophagosome and this step is primarily regulated by Unc-51-like kinase 1 (ULK1) [15]

  • We tested whether mTOR activity was elevated in homozygous zQ175 mice that might explain reduced ULK1 activity and autophagy inhibition and whether mTOR activity can be modulated by CTEP

Read more

Summary

Introduction

Huntington’s disease (HD) is an adult-onset, inherited autosomal dominant neurodegenerative disorder caused by a polyglutamine (CAG) repeat expansion in exon 1 that encodes the amino-terminal of the huntingtin protein [1, 2]. It is characterized by progressive motor, cognitive psychiatric deficits and early mortality [3, 4]. We showed that the pharmacological blockade of mGluR5 using the selective negative allosteric modulator (NAM), CTEP, results in delayed disease progression and the reduction in mHTT aggregates found in the brains of a zQ175 knock-in mouse model of HD [10]. CTEP (2-chloro-4-[2[2,5-dimethyl-1-[4-(trifluoromethoxy) phenyl] imidazol-4-yl] ethynyl] pyridine) was chosen for this study because of

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call