Abstract

In brain monoaminergic systems, common biogenic amines, including dopamine, norepinephrine, and serotonin, serve as neurotransmitters. Monoamine autoreceptors provide feedback regulation in neurotransmitter release, and monoamine transporters clear the released neurotransmitters to control synaptic signaling. Recently, trace amine-associated receptor 1 (TAAR1) has been found to be expressed in brain monoaminergic nuclei and activated by common biogenic amines in vitro. This study used transfected cells and brain synaptosomes to evaluate the interaction of common biogenic amines with TAAR1 and monoamine autoreceptors and explore their modulatory effects on monoamine transporters. We confirmed that TAAR1 was activated by dopamine, norepinephrine, and serotonin and demonstrated that TAAR1 signaling was attenuated by monoamine autoreceptors at exposure to dopamine, norepinephrine, and serotonin. In transfected cells, TAAR1 in response to dopamine, norepinephrine, and serotonin significantly inhibited uptake and promoted efflux of [3H]dopamine, [3H]norepinephrine, and [3H]serotonin, respectively, whereas the monoamine autoreceptors, D2s, alpha(2A), and 5-HT(1B) enhanced the uptake function under the same condition. In brain synaptosomes, dopamine, norepinephrine, and serotonin significantly altered the uptake and efflux of [3H]dopamine, [3H]norepinephrine, and [3H]serotonin, respectively, when the monoamine autoreceptors were blocked. By comparing the effects of dopamine, norepinephrine, and serotonin in monkey and wild-type mouse synaptosomes to their effects in TAAR1 knockout mouse synaptosomes, we deduced that TAAR1 activity inhibited uptake and promoted efflux by monoamine transporters and that monoamine autoreceptors exerted opposite effects. These data provide the first evidence that common biogenic amines modulate monoamine transporter function via both TAAR1 and monoamine autoreceptors, which may balance monoaminergic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.