Abstract

The proliferation of normal human fibroblast cells was enhanced by the addition of inorganic polyphosphate (poly(P)) into culture media. The mitogenic activities of acidic fibroblast growth factor (FGF-1) and basic fibroblast growth factor (FGF-2) were also enhanced by poly(P). A physical interaction between poly(P) and FGF-2 was observed, and FGF-2 was both physically and functionally stabilized by poly(P). Furthermore, poly(P) facilitated the FGF-2 binding to its cell surface receptors. Because poly(P) is widely distributed in mammalian tissues, it may be a spontaneous modulator of FGFs.

Highlights

  • Inorganic polyphosphates (poly(P))1 are linear polymers of many tens or hundreds of orthophosphate residues linked by high energy phosphoanhydride bonds that have been found in a wide range of organisms including bacteria, fungi, algae, mosses, insects, and protozoa and in the tissues of higher plants and animals [1,2,3,4]

  • We first studied in this report the effect of poly(P) on mammalian cell growth or proliferation in vitro and revealed the novel poly(P) functions concerning the modulation of mitogenic activity of fibroblast growth factors (FGF) [8]

  • To examine whether the co-treatment of poly(P) and FGF is effective in stimulating mitogenic activity of FGFs, Balb/c 3T3, NHDF, and human gingival fibroblasts (HGF) whose growth could be dependent on FGF were treated with FGF-1 or FGF-2 in combination with poly(P) [12]

Read more

Summary

Introduction

Inorganic polyphosphates (poly(P))1 are linear polymers of many tens or hundreds of orthophosphate residues linked by high energy phosphoanhydride bonds that have been found in a wide range of organisms including bacteria, fungi, algae, mosses, insects, and protozoa and in the tissues of higher plants and animals [1,2,3,4]. Poly(P) facilitated the FGF-2 binding to its cell surface receptors.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.