Abstract

Background. Cancer cells that overexpress c-erbB oncogenes exhibit resistance to chemotherapy, enhanced tumorigenicity, as well as increased propensity for metastasis. The aim of this study was to investigate if depletion of erbB-1/EGFR and erbB-2/HER2neu oncogene products by 17-allylamino 17-demethoxy Geldanamycin (17AAGA) could diminish the metastatic potential of non-small cell lung cancer (NSCLC) cells that express varying levels of the erbB1/erbB2 oncogenes. Methods. NSCLC cell lines (H460, H358, H322, or H661) were assayed for expression of erbB1 and erbB2, the cell adhesion molecule E-cadherin, secretion of the matrix metalloproteinase 9 (MMP-9), and vascular endothelial cell growth factor (VEGF), as well as their ability to invade Matrigel after 48-hour exposure to 17AAGA. Results. 17AAGA significantly depleted erbB1 or erbB2 levels in NSCLC cells expressing high levels of these proteins, and effectively inhibited their growth with IC 50 values ranging from 50 to 90 nmol/L. Moreover, drug treatment enhanced E-cadherin expression in H322 and H358 cells, and inhibited secretion of MMP-9 and VEGF secretion by tumor cells. 17AAGA diminished hypoxia-induced upregulation of VEGF expression as well as growth factor-mediated augmentation of MMP-9 secretion, and profoundly inhibited the ability of H322 and H358 cells to migrate through Matrigel in response to chemoattractants. Conclusions. In addition to its known antiproliferative and chemosensitization effects, 17AAGA inhibits the metastatic phenotype of lung cancer cells. 17AAGA may be a novel pharmacologic agent for specific molecular intervention in lung cancer patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.