Abstract

Mesenchymal stromal cells (MSCs) are promising candidates for cell therapy. Their therapeutic use requires extensive expansion to obtain a sufficiently high number of cells for clinical applications. State-of-the-art expansion systems, that is, primarily culture flask-based systems, are limited regarding scale-up, automation, and reproducibility. To overcome this bottleneck, microcarrier (MC)-based expansion processes have been developed. For the first time, MSCs from the perinatal sources umbilical cord (UC) and amniotic membrane (AM) were expanded on MCs. This study focuses on the comparison of flask- and Cytodex 1 MC-expanded MSCs by evaluating the influence of the expansion process on biological MSC characteristics. Furthermore, we tested the hypothesis to obtain more homogeneous MSC preparations by expanding cells on MCs in controlled large-scale bioreactors. MSCs were extensively characterized determining morphology, cell growth, surface marker expression, and functional properties such as differentiation capacity, secretion of paracrine factors, and gene expression. Based on their gene expression profile MSCs from different donors and sources clearly clustered in distinct groups solely depending on the expansion process-MC or flask culture. MC- and flask-expanded MSCs significantly differed from each other regarding surface markers and both paracrine factors and gene expression profiles. Furthermore, based on gene expression analysis, MC cultivation of MSCs in controlled bioreactor systems resulted in less heterogeneity between cells from different donors. In conclusion, MC-based MSC expansion in controlled bioreactors has the potential to reliably produce MSCs with altered characteristics and functions as compared to flask-expanded MSCs. These findings may be useful for the generation of MSCs with tailored properties for clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call