Abstract

During walking, maintenance and coordination of activity in leg motoneurons requires intersegmental signal transfer. In a semi-intact preparation of the stick insect, we studied membrane potential modulations in mesothoracic (middle leg) motoneurons and local premotor nonspiking interneurons that were induced by stepping of a front leg on a treadmill. The activity in motoneurons ipsi- and contralateral to the stepping front leg was recorded from neuropilar processes. Motoneurons usually exhibited a tonic depolarization of < or =5 mV throughout stepping sequences. This tonic depolarization depended on membrane potential and was found to reverse in the range of -32 to -47 mV. It was accompanied by a mean membrane resistance decrease of approximately 12%. During front-leg stepping, an increased spike activity to depolarizing current pulses was observed in 73% of contralateral flexor motoneurons that were tested. Motoneurons ipsilateral to the walking front leg exhibited phasic membrane potential modulations coupled to steps in accordance with previously published results. Coupling patterns were typical for a given motoneuron pool. Local nonspiking mesothoracic interneurons that provide synaptic drive to tibial motoneurons also contribute to the modulation of membrane potential of tibial motoneurons during front-leg walking. We hypothesize that the tonic depolarization of motoneurons during walking is a cellular correlate of arousal that usually increases effectiveness of phasic excitation in supporting motoneuron firing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call