Abstract

Modulation of the voltage-gated K+ conductance in T-lymphocytes by substance P was examined. Whole-cell recordings from JurkaT E6-1 human T-lymphocytes revealed two components of substance P action on the outward K+ current: (i) dose- and time-dependent reduction of current peak amplitude; and (ii) acceleration of the current inactivation rate. This action was blocked by substituting Cs+ for K+ in the recording pipette and by the substance P antagonist. [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-substance P. As indicated by conductance-voltage relationship, the reduction in current peak amplitude as a result of substance P application was not due to a shift of the voltage dependence of the channel. Raising intracellular free calcium concentration from 2 to 200 nM reversed the reduction, induced by substance P, in current peak amplitude and disclosed an apparent desensitization towards the neuropeptide action. The treatment, however, did not reverse substance P-induced acceleration of the rate of current decay. Intracellular administration of hydrolysis-resistant guanosine triphosphate (to persistently activate GTP-binding protein) and guanosine diphosphate (to competitively inhibit GTP-binding proteins) analogues mimicked and inhibited substance P-induced reduction of K+ conductance, respectively. The data demonstrate a modulation of T-lymphocyte K+ channels by substance P and substantiate a possible role for GTP-binding proteins in this modulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.