Abstract

Sepsis is a serious condition that can lead to long-term organ damage and death. At the molecular level, the hallmark of sepsis is the elevated expression of a multitude of potent cytokines, i.e. a cytokine storm. For sepsis involving gram-negative bacteria, macrophages recognize lipopolysaccharide (LPS) shed from the bacteria, activating Toll-like-receptor 4 (TLR4), and triggering a cytokine storm. Glycogen synthase kinase-3 (GSK-3) is a highly active kinase that has been implicated in LPS-induced cytokine production. Thus, compounds that inhibit GSK-3 could be potential therapeutics for sepsis. Our group has recently described a novel and highly selective inhibitor of GSK-3 termed COB-187. In the present study, using THP-1 macrophages, we evaluated the ability of COB-187 to attenuate LPS-induced cytokine production. We found that COB-187 significantly reduced, at the protein and mRNA levels, cytokines induced by LPS (e.g. IL-6, TNF-α, IL-1β, CXCL10, and IFN-β). Further, the data suggest that the inhibition could be due, at least in part, to COB-187 reducing NF-κB (p65/p50) DNA binding activity as well as reducing IRF-3 phosphorylation at Serine 396. Thus, COB-187 appears to be a potent inhibitor of the cytokine storm induced by LPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.