Abstract
Recent experimental and theoretical results have highlighted the surprisingly dominant role of acoustic phonons in regulating dynamic processes in nanocrystals. While it has been known for many years that acoustic phonon frequencies in nanocrystals depend on their size, strategies for tuning acoustic phonon energy at a given fixed size were not available. Here, we show that acoustic phonon frequencies in colloidal quantum dots (QDs) can be tuned through the choice of the surface ligand. Using low-frequency Raman spectroscopy, we explore the dependence of the l = 0 acoustic phonon resonance in CdSe QDs on ligand size, molecular weight, and chemical functionality. On the basis of these aggregated observations, we conclude that the primary mechanism for this effect is mass loading of the QD surface and that interactions between ligands and with the surrounding environment play a comparatively minor yet non-negligible role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.