Abstract

IntroductionEpilepsy is a debilitating neurological condition characterized by spontaneous seizures as well as significant comorbid behavioral abnormalities. In addition to seizures, epileptic patients exhibit interictal spikes far more frequently than seizures, often, but not always observed in the same brain areas. The exact relationship between spiking and seizures as well as their respective effects on behavior are not well understood. In fact, spiking without overt seizures is seen in various psychiatric conditions including attention-deficit hyperactivity disorder. MethodsIn order to study the effects of spiking and seizures on behavior in an epileptic animal model, we used long-term video-electroencephalography recordings at six cortical recording sites together with behavioral activity monitoring. Animals received unilateral injections of tetanus toxin into either the somatosensory or motor cortex. ResultsSomatosensory cortex-injected animals developed progressive spiking ipsilateral to the injection site, while those receiving the injection into the motor cortex developed mostly contralateral spiking and spontaneous seizures. Animals with spiking but no seizures displayed a hyperactive phenotype, while animals with both spiking and seizures displayed a hypoactive phenotype. Not all spikes were equivalent as spike location strongly correlated with distinct locomotor behaviors including ambulatory distance, vertical movements, and rotatory movement. ConclusionsTogether, our results demonstrate relationships between brain region-specific spiking, seizures, and behaviors in rodents that could translate into a better understanding for patients with epileptic behavioral comorbidities and other neuropsychiatric disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call