Abstract

The large absolute photonic bandgaps of two-dimensional (2D) anisotropic magnetic plasma photonic crystals with hexagonal and square lattices are obtained by introducing tellurium dielectric rods using the modified plane wave expansion method. Equations for calculating the band structures in the irreducible part of the first Brillouin zone are theoretically deduced. The modulation properties indicate that the location and bandwidth of the absolute photonic bandgaps (PBGs) could be tuned by filling factor, plasma frequency, and magnetic field. The effective tunable ranges and critical values of these parameters are found. These results could be helpful in designing 2D anisotropic PPCs with large absolute PBGs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.