Abstract
The genetic switch of Lactobacillus casei bacteriophage A2 is regulated by the CI protein, which represses the early lytic promoter PR and Cro that abolishes expression from the lysogenic promoter PL . Lysogens contain equivalent cI and cro-gp25 mRNA concentrations, i.e., CI only partially represses P(R), predicting a lytic cycle dominance. However, A2 generates stable lysogens. This may be due to Gp25 binding to the cro-gp25 mRNA between the ribosomal binding site and the cro start codon, which abolishes its translation. Upon lytic cycle induction, CI is partially degraded, cro-gp25 mRNA levels increase, and Cro accumulates, launching viral progeny production. The concomitant concentration increase of Gp25 restricts cro mRNA translation, which, together with the low but detectable levels of CI late during the lytic cycle, promotes reentry of part of the cell population into the lysogenic cycle, thus explaining the low proportion of L. casei lysogens that become lysed (∼ 1%). A2 shares its genetic switch structure with many other Firmicutes phages. The data presented may constitute a model of how these phages make the decision for lysis versus lysogeny.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.