Abstract

Modulation of intracellular calcium ([Ca(2+)](i)) transient in response to beta-adrenoceptor stimulation in the hearts of hindlimb unweighted (HLU) rats during simulated weightlessness has not been reported. In the present study, we adopted the rat tail suspension for 4 wk to simulate weightlessness. Effects of simulated microgravity on beta-adrenoceptor responsiveness were then studied. Mean arterial blood pressure, left ventricular pressure (LVP), systolic function [maximum positive change in pressure over time (+dP/dt(max))], and diastolic function [maximum negative change in pressure over time (-dP/dt(max))] were monitored during the in vivo experiment. beta-Adrenoceptor density was quantitated by radioactive ligand binding. Single rat ventricular myocyte was obtained by enzymatic dissociation method. +/-dP/dt(max), myocyte contraction, intracellular [Ca(2+)](i) transient, and L-type calcium current in response to beta-adrenoceptor stimulation with isoproterenol were measured. Compared with the control group, no significant changes were found in heart weight, body weight, and mean arterial blood pressure, whereas LVP and +/-dP/dt(max) were significantly reduced. LVP and +/-dP/dt(max) were significantly attenuated in the HLU group in response to isoproterenol administration. In the in vitro study, the beta-adrenoceptor density was unchanged. Effects of isoproterenol on electrically induced single-cell contraction and [Ca(2+)](i) transient in myocytes of ventricles in HLU rats were significantly attenuated. The enhanced L-type Ca(2+) current elicited by isoproterenol in cardiomyocytes was significantly decreased in the HLU group. The above results indicate that impaired function of L-type Ca(2+) current and decreased [Ca(2+)](i) transient cause the depressed responsiveness of the beta-adrenoceptor stimulation, which may be partially responsible for the depression of cardiac function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.