Abstract

Group I metabotropic glutamate receptors (mGluRs) are coupled to phosphoinositide hydrolysis, and are thought to modulate neuronal excitability, by mobilizing intracellular Ca 2+. Difference in Ca 2+ mobilization among subclasses of the receptors has been reported, and regarded as a possible cause of variant neuronal modifications. In hippocampal interneurons, several subclasses of mGluRs including mGluR1 and mGluR5 have been immunohistochemically identified. The subclass-specific physiological effects of mGluRs on neuronal transmission in hippocampus, however, have not been fully elucidated. In the present study, effects of group I mGluR agonist, ( S)-3,5-dihydroxyphenylglycine (DHPG) on intracellular calcium concentration were examined in hippocampal interneurons. Application of DHPG increased fluorescence ratio in neonatal CA3 stratum oriens/alveus interneurons. The DHPG-induced calcium mobilization was markedly inhibited by mGluR1-specific antagonist, cyclopropan[b]chromen-1a-carboxylate (CPCCOEt). Inhibition of the calcium elevation by mGluR5-specific antagonist, 6-methyl-2-(phenylazo)-3-pyrindol (MPEP), was weaker than that of CPCCOEt. The fluorescence ratio was not significantly changed by application of mGluR5-specific agonist, ( RS)-2-chloro-5-hydroxyphenylglycine (CHPG). DHPG induced calcium responses in CA1 interneurons as in CA3, and the responses were partially inhibited by MPEP treatment. Effects of group I mGluR agonist and antagonist were also investigated, on GABA A receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in CA3 pyramidal neurons. The GABAergic sIPSCs were facilitated by DHPG perfusion, and the potentiation was reduced by CPCCOEt, and less distinctly by MPEP. The sIPSCs were not significantly potentiated by CHPG application. These results indicate that mGluR1 is functional in hippocampal interneurons, and DHPG exerts its effect mainly through this receptor at early developmental period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.