Abstract

Clinical studies have demonstrated that estrogen replacement therapy suppresses stress-induced increases in plasma catecholamines. The present study determined whether normal circulating levels of estrogen can modulate hypoglycemia-induced increases in plasma epinephrine (EPI). In anesthetized female rats, insulin-induced hypoglycemia (0.25 U/kg) increased plasma EPI concentration to a significantly greater extent in 14-day ovariectomized (OVEX) rats compared to that in sham-operated controls. In 17beta-estradiol (E2)-replaced OVEX rats, the hypoglycemia-induced rise in plasma EPI was reduced significantly when compared to that in vehicle-replaced OVEX rats. OVEX and E2 replacement had no effect on tyrosine hydroxylase or phenylethanolamine N-methyltransferase mRNA levels in the adrenal medulla. In isolated adrenal medullary chromaffin cells, agonist-induced increases in intracellular Ca2+ were unaffected by 48-hr exposure to 10 nM E2. In contrast, acute (3-min) exposure to micromolar concentrations of E2 dose-dependently and reversibly inhibited agonist-induced Ca2+ transients. In addition, in OVEX rats, a constant infusion of E2 significantly reduced the insulin-induced increase in plasma EPI concentration compared to that in vehicle-infused controls. These data demonstrate that physiologic levels of circulating E2 can modulate hypoglycemia-induced increases in plasma EPI. This effect seems independent of steroid influence on adrenal medullary secretion or biosynthesis. In contrast, acute exposure to high levels of E2 can also suppress hypoglycemia-induced increases in plasma epinephrine, due at least in part to inhibition of stimulus-secretion coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.