Abstract

Volatile anesthetics have been reported to inhibit hyperpolarization-activated cyclic-nucleotide gated channels underlying the hyperpolarization-activated cation current (Ih) that contributes to generation of synchronized oscillatory neural rhythms. Meanwhile, the developmental change of Ih has been speculated to play a pivotal role during maturation. In this study, we examined the effect of the volatile anesthetic sevoflurane, which is widely used in pediatric surgery, on Ih and on functional Ih activation kinetics of cholinergic interneurons in developing striatum. Our analyses showed that the changes in Ih of cholinergic interneurons occurred in conjunction with maturation. Sevoflurane application (1–4%) caused significant inhibition of Ih in a dose-dependent manner, and apparently slowed Ih activation. In current-clamp recordings, sevoflurane significantly decreased spike firing during the rebound activation, which is essential for responses to the sensory inputs from the cortex and thalamus. The sevoflurane-induced inhibition of Ih in striatal cholinergic interneurons may lead to alterations of the acetylcholine-dopamine balance in the neural circuits during the early postnatal period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.