Abstract

BackgroundPreterm labour occurs in approximately 10% of pregnancies and is a major cause of infant morbidity and mortality. However, the pathways involved in regulating contractility in normal and preterm labour are not fully elucidated. Our aim was to utilise a human myometrial contractility model to investigate the effect of a number of uterine specific contractility agents in this system. Therefore, we investigated the contractile response of human primary uterine smooth muscle cells or immortalised myometrial smooth muscle cells cultured within collagen lattices, to known mediators of uterine contractility, which included thrombin, the ROCK-1 inhibitor Y-27632, tumour necrosis factor alpha (TNF alpha) and the non-steroidal anti-inflammatory indomethacin.MethodsCell contractility was calculated over time, with the collagen gel contraction assay, utilising human primary uterine smooth muscle cells (hUtSMCs) and immortalised myometrial smooth muscle cells (hTERT-HM): a decrease in collagen gel area equated to an increase in contractility. RNA was isolated from collagen embedded cells and gene expression changes were analysed by real time fluorescence reverse transcription polymerase chain reaction. Scanning electron and fluorescence microscopy were employed to observe cell morphology and cell collagen gel interactions. Statistical analysis was performed using ANOVA followed by Tukey's post hoc tests.ResultsTNF alpha increased collagen contractility in comparison to the un-stimulated collagen embedded hUtSMC cells, which was inhibited by indomethacin, while indomethacin alone significantly inhibited contraction. Thrombin augmented the contractility of uterine smooth muscle cell and hTERT-HM collagen gels, this effect was inhibited by the thrombin specific inhibitor, hirudin. Y-27632 decreased both basal and thrombin-induced collagen contractility in the hTERT-HM embedded gels. mRNA expression of the thrombin receptor, F2R was up-regulated in hUtSMCs isolated from collagen gel lattices, following thrombin-stimulated contractility.ConclusionTNF alpha and thrombin increased uterine smooth muscle cell collagen contractility while indomethacin had the opposite effect. Thrombin-induced collagen contractility resulted in F2R activation which may in part be mediated by the ROCK-1 pathway. This study established the in vitro human myometrial model as a viable method to assess the effects of a range of uterotonic or uterorelaxant agents on contractility, and also permits investigation of the complex regulatory pathways involved in mediating myometrial contractility at labour.

Highlights

  • IntroductionThe pathways involved in regulating contractility in normal and preterm labour are not fully elucidated

  • Preterm labour occurs in approximately 10% of pregnancies and is a major cause of infant morbidity and mortality

  • We studied the effects of a range of uterotonic and uterorelaxant agents on human primary uterine smooth muscle or immortalised human myometrial hTERT-HM cells in an in vitro model of human myometrium

Read more

Summary

Introduction

The pathways involved in regulating contractility in normal and preterm labour are not fully elucidated. Preterm labour occurs in approximately 10% of pregnancies and is a major cause of infant morbidity and mortality. It accounts for approximately 75% of all neonatal problems. A suitable model is essential to study the processes involved in myometrial contraction and the agents which mediate these responses. The use of in vivo studies is not ideal as the process of labour differs amongst animals, and human parturition is distinct from other mammals, so use of animal models can only give limited insight [3]. It is less problematic to monitor gene expression changes in this system in comparison to that in the myometrial strip sections

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call