Abstract

BackgroundHIV-1 Gag proteins are essential for virion assembly and viral replication in newly infected cells. Gag proteins are also strong determinants of viral infectivity; immune escape mutations in the Gag capsid (CA) protein can markedly reduce viral fitness, and interactions of CA with host proteins such as cyclophilin A (CypA) and TRIM5α can have important effects on viral infectivity. Little information, however, is available concerning the extent that different primary Gag proteins affect HIV-1 replication in different cell types, or the impact on viral replication of differences in the expression by target cells of proteins that interact with CA. To address these questions, we compared the infectivity of recombinant HIV-1 viruses expressing Gag-protease sequences from primary isolates in different target cells in the presence or absence of agents that disrupt cyclophilin A – CA interactions and correlated these results with the viral genotype and the expression of cyclophilin A and TRIM5α by the target cells.ResultsViral infectivity was governed by the nature of the Gag proteins in a target cell-specific fashion. The treatment of target cells with agents that disrupt CypA-CA interactions often produced biphasic dose-response curves in which viral infectivity first increased and subsequently decreased as a function of the dose used. The extent that treatment of target cells with high-dose CypA inhibitors impaired viral infectivity was dependent on several factors, including the viral genotype, the nature of the target cell, and the extent that treatment with low-dose CypA inhibitors increased viral infectivity. Neither the presence of polymorphisms in the CA CypA-binding loop, the level of expression of CypA, or the level of TRIM5α expression could, alone, explain the differences in the shape of the dose-response curves observed or the extent that high-dose CypA inhibitors reduced viral infectivity.ConclusionMultiple interactions between host-cell factors and Gag can strongly affect HIV-1 infectivity, and these vary according to target cell type and the origin of the Gag sequence. Two of the cellular activities involved appear to be modulated in opposite directions by CypA-CA interactions, and Gag sequences determine the intrinsic sensitivity of a given virus to each of these cellular activities.

Highlights

  • HIV-1 Gag proteins are essential for virion assembly and viral replication in newly infected cells

  • Several lines of evidence indicate that the inhibition of cyclophilin A (CypA)-CA interactions in newly infected human target cells usually impairs viral infectivity, including studies evaluating the infection of target cells whose CypA expression has been reduced or eliminated, the effect of inhibiting CypA-CA interactions using cyclosporine A (CsA) or its analogs, and the impact on infectivity of CA mutations such as P90A and G89A that impair CypA binding [5,7,8,9,10,11,12,13,14,15]

  • Viruses carrying CA mutations selected during viral replication in CsA-treated target cells (A92E, G94D) and a mutation produced through alanine scanning (T54A) replicate better in some, but not all, target cells in the presence of CsA [10,11,1618]

Read more

Summary

Introduction

HIV-1 Gag proteins are essential for virion assembly and viral replication in newly infected cells. Little information is available concerning the extent that different primary Gag proteins affect HIV-1 replication in different cell types, or the impact on viral replication of differences in the expression by target cells of proteins that interact with CA To address these questions, we compared the infectivity of recombinant HIV-1 viruses expressing Gag-protease sequences from primary isolates in different target cells in the presence or absence of agents that disrupt cyclophilin A – CA interactions and correlated these results with the viral genotype and the expression of cyclophilin A and TRIM5α by the target cells. The HIV-1 Gag proteins play important roles throughout the viral life-cycle, including the assembly and release of viral particles, their subsequent maturation into infectious virions, and during the events occurring between the release of capsids into newly infected cells and the integration of proviral DNA. The mechanisms through which CypA binding modulates viral infectivity are not defined and several possibilities have been discussed, including effects on capsid stability, viral uncoating, and the protection of viral cores from cellular restriction factors [8,19,20,21,22,23]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.