Abstract

BackgroundBiologic TNF-α inhibitors (bTNFIs) can block cerebral TNF-α in Alzheimer’s disease (AD) if these macromolecules can cross the blood–brain barrier (BBB). Thus, a model bTNFI, the extracellular domain of type II TNF-α receptor (TNFR), which can bind to and sequester TNF-α, was fused with a mouse transferrin receptor antibody (TfRMAb) to enable brain delivery via BBB TfR-mediated transcytosis. Previously, we found TfRMAb-TNFR to be protective in a mouse model of amyloidosis (APP/PS1) and tauopathy (PS19), and herein we investigated its effects in mice that combine both amyloidosis and tauopathy (3xTg-AD).MethodsEight-month-old female 3xTg-AD mice were injected intraperitoneally with saline (n = 11) or TfRMAb-TNFR (3 mg/kg; n = 11) three days per week for 12 weeks. Age-matched wild-type (WT) mice (n = 9) were treated similarly with saline. Brains were processed for immunostaining and high-resolution multiplex NanoString GeoMx spatial proteomics.ResultsWe observed regional differences in proteins relevant to Aβ, tau, and neuroinflammation in the hippocampus of 3xTg-AD mice compared with WT mice. From 64 target proteins studied using spatial proteomics, a comparison of the Aβ-plaque bearing vs. plaque-free regions in the 3xTg-AD mice yielded 39 differentially expressed proteins (DEP) largely related to neuroinflammation (39% of DEP) and Aβ and tau pathology combined (31% of DEP). Hippocampal spatial proteomics revealed that the majority of the proteins modulated by TfRMAb-TNFR in the 3xTg-AD mice were relevant to microglial function (⁓ 33%). TfRMAb-TNFR significantly reduced mature Aβ plaques and increased Aβ-associated microglia around larger Aβ deposits in the 3xTg-AD mice. Further, TfRMAb-TNFR increased mature Aβ plaque-associated microglial TREM2 in 3xTg-AD mice.ConclusionOverall, despite the low visual Aβ load in the 11-month-old female 3xTg-AD mice, our results highlight region-specific AD-relevant DEP in the hippocampus of these mice. Chronic TfRMAb-TNFR dosing modulated several DEP involved in AD pathology and showed a largely microglia-centric mechanism of action in the 3xTg-AD mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call