Abstract

Sensible heat flux data obtained from the U.S. Environmental Protection Agency's Regional Air Pollution Study in St. Louis, Missouri are presented and discussed. Large spatial variations exist in heat flux on both a land-use scale and the urban scale. Arguments based upon empirical data and sampling theory show that estimates of heat flux representative of an upwind fetch l x require a minimum observation height proportional to z 3/4. The influence of advection on the magnitude of the heat flux is also explored for both the urban and sub-urban or land-use scales. The data clearly indicate that advection can strongly modulate and even dominate the vertical heat flux above surfaces in areas which maintain large horizontal temperature gradients. The advection contribution is positive for cold air advection and negative for warm air advection, and may result from either the urban heat island or land-use mesoscale features. The depth of advective influence is directly proportional to the horizontal scale of the phenomenon and inversely proportional to horizontal temperature gradient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call