Abstract

The gut microbiota exerts a role in type 2 diabetes (T2D), and deviations from a mutualistic ecosystem layout are considered a key environmental factor contributing to the disease. Thus, the possibility of improving metabolic control in T2D by correcting gut microbiome dysbioses through diet has been evaluated. Here, we explore the potential of two different energy-restricted dietary approaches - the fibre-rich macrobiotic Ma-Pi 2 diet or a control diet recommended by Italian professional societies for T2D treatment - to correct gut microbiota dysbioses in T2D patients. In a previous 21-d open-label MADIAB trial, fifty-six overweight T2D patients were randomised to the Ma-Pi 2 or the control diet. For the present study, stools were collected before and after intervention from a subset of forty MADIAB participants, allowing us to characterise the gut microbiota by 16S rRNA sequencing and imputed metagenomics. To highlight microbiota dysbioses in T2D, the gut microbiota of thirteen normal-weight healthy controls were characterised. According to our findings, both diets were effective in modulating gut microbiome dysbioses in T2D, resulting in an increase of the ecosystem diversity and supporting the recovery of a balanced community of health-promoting SCFA producers, such as Faecalibacterium, Roseburia, Lachnospira, Bacteroides and Akkermansia. The Ma-Pi 2 diet, but not the control diet, was also effective in counteracting the increase of possible pro-inflammatory groups, such as Collinsella and Streptococcus, in the gut ecosystem, showing the potential to reverse pro-inflammatory dysbioses in T2D, and possibly explaining the greater efficacy in improving the metabolic control.

Highlights

  • Type 2 diabetes (T2D) is markedly increasing its prevalence in Westernised countries[1], and it represents a challenging problem for national healthcare systems[2]

  • At the end of this short-term nutritional intervention, the Ma-Pi 2 macrobiotic diet proved to be more effective in reducing fasting and postprandial blood glucose, glycated Hb (HbA1c), serum cholesterol, homeostasis model assessment of insulin resistance (HOMA-IR), BMI and waist and hip circumferences compared with the CTR diet[21]

  • Even if it cannot be excluded that the age differences between T2D patients and healthy controls contribute, at least in part, to the observed differences in gut microbiota (GM) diversity, we failed to detect any significant correlation between age and microbiome diversity in our data set

Read more

Summary

Introduction

Type 2 diabetes (T2D) is markedly increasing its prevalence in Westernised countries[1], and it represents a challenging problem for national healthcare systems[2]. The greater effect of the high-fibre Ma-Pi 2 diet on several metabolic parameters of T2D patients was probably because of, at least in part, an inherent capability of favouring the recovery of a mutualistic GM layout To verify this hypothesis, in this study, we compared the efficacy of the Ma-Pi 2 and the CTR diet in modulating GM dysbioses in a subset of forty overweight T2D patients participating in the MADIAB trial, for whom stools were successfully collected before and after intervention. In this study, we compared the efficacy of the Ma-Pi 2 and the CTR diet in modulating GM dysbioses in a subset of forty overweight T2D patients participating in the MADIAB trial, for whom stools were successfully collected before and after intervention To this aim, stools were analysed for the microbiota composition by nextgeneration sequencing (NGS) of the 16S rRNA gene and imputed metagenomics. Our findings suggest that the Ma-Pi 2 diet has the potential to reverse compositional and functional GM dysbioses in T2D, favouring the recovery of a mutualistic configuration capable of supporting the host energy homeostasis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call