Abstract
Our present study was designed to clarify the mechanism by which the same megakaryocyte progenitor cells respond to various cytokines at different stages of megakaryocyte development. We examined the changes in mRNA expression of granulocyte macrophage colony-stimulating factor receptor beta-subunit (GM-CSFR beta-subunit), which was a common subunit of a high-affinity interleukin-3 receptor (IL-3R) and a high-affinity GM-CSFR, and interleukin-6 receptor (IL-6R) during megakaryocyte development in a human megakaryocytic leukemia cell line (CMK) which could proliferate and/or differentiate in the presence of 12-O-tetradecanoylphorbol 13-acetate (TPA), IL-3, GM-CSF, and IL-6. We found that GM-CSFR beta-subunit mRNA was expressed constitutively in CMK cells and was transiently down-regulated by TPA and IL-6, while the expression of IL-6R mRNA was increased by TPA in association with the differentiation of megakaryocytes. Furthermore, the TPA-induced down-regulation of GM-CSFR beta-subunit mRNA expression and its recovery were blocked by cycloheximide (CHX), a protein synthesis inhibitor, suggesting that these modulations required de novo protein synthesis. These findings imply that multi-lineage cytokines such as GM-CSF and IL-3 may contribute preferentially to the regulation of the earlier development of megakaryocyte progenitor cells with high densities of multi-lineage cytokine receptors, while IL-6 may be limited in its action to supporting the maturation of more differentiated megakaryocyte progenitor cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.