Abstract
Activity of second-order relay neurons in the nucleus tractus solitarius (NTS) is regulated by peripheral and intrinsic synaptic inputs, and modulation of those inputs by metabotropic glutamate receptors (mGluRs) has been proposed. This study investigated effects of mGluR activation on glutamatergic transmission in the NTS second-order neurons of guinea pigs. Whole-cell patch-clamp recordings from the brainstem slices revealed that activation of mGluRs exerted its effects on the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) but not on the amplitude. The sEPSC frequency was increased by an agonist of group I mGluRs, and it was decreased by an mGluR1 antagonist but not by an mGluR5 antagonist. The agonists of group II and III mGluRs decreased the sEPSC frequency, while their antagonists alone had no effect. Perfusion of cystine or TBOA, either of which elevates extracellular glutamate concentration, resulted in an increase in the sEPSC frequency, leaving the amplitude unchanged. The increased frequency of sEPSCs was returned to control by an mGluR1 antagonist. The tractus solitarius-evoked EPSCs were not altered by an agonist of group I mGluRs, whereas they were decreased along with an increase in paired-pulse ratio by agonists of group II and III mGluRs. These results suggest that mGluRs are present at the presynaptic sites in the NTS second-order neurons in guinea pigs. The mGluR1s function to facilitate the release of glutamate from axon terminals of intrinsic interneurons and the group II and III mGluRs play an inhibitory role in glutamatergic transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.