Abstract

Glucose transport in hamster adipocytes and its modulation by insulin and isoprenaline was characterized with the aid of the non-metabolizable hexose 3-0-methylglucose. Insulin stimulated the initial uptake rates by an increase in Vmax of the transport without any detectable change in Km. The hormone concentration producing half maximal stimulation was identical to that required in rat adipocytes. However, hamster adipocytes were much less responsive to insulin (3-fold stimulation as compared to a 12-fold stimulation in rat fat cells), and maximal transport rates were 10-fold lower than that observed in rat adipocytes. Accordingly, the number of glucose transporters, as assessed by glucose-inhibitable cytochalasin-B binding, was considerably lower in plasma membranes of hamster adipocytes. Moreover, no transporters were detected in the low-density microsomes which in insulin-sensitive cell types represent the intracellular pool of recruitable glucose transporters. The relative insulin resistance of the hamster fat cells may therefore be due to a depleted pool of intracellular glucose transporters. In the presence of adenosine, the beta-adrenoceptor agonist isoprenaline produced a moderate stimulation of the basal transport rate which was antagonized by the alpha 2-agonist clonidine. If adenosine deaminase was added in order to remove endogenous adenosine, isoprenaline inhibited the insulin-stimulated transport by 50%. In contrast to the stimulatory effects of insulin and isoproterenol, the inhibitory effect of the catecholamine was reversed by cooling the cells to 22 degrees. Glucagon produced a comparable inhibition, suggesting that the inhibitory effect was mediated by adenylate cyclase or its regulatory subunits.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.