Abstract
The modulation of glucocorticoid receptor activity by cyclic nucleotides was studied in cultured human skin fibroblasts. The receptors appeared to be activated in the presence of dibutyryl-cAMP and inactivated by dibutyryl-cGMP. Significantly, the cGMP content of the fibroblasts increased during cell growth, with a concomitant decrease in the glucocorticoid receptor activity, while when the cells reached early confluency the decrease in cGMP content was accompanied by an increase in cAMP and increased activity of the glucocorticoid receptors. In addition, cortisol induced (2′-5′)oligoadenylate synthetase in these cells and raised the cellular (2′-5′)oligoadenylate concentrations. This resulted in a decrease in both DNA and protein synthesis activity in the cells, a response which correlated with the (2′-5′)oligoadenylate concentration. The combination of cortisol and dibutyryl-cAMP had a synergetic stimulatory effect on the (2′-5′)oligoadenylate concentration and a synergetic inhibitory effect on protein synthesis. In conclusion, it is demonstrated here that cyclic nucleotides can modulate glucocorticoid receptor activity in cultured human skin fibroblasts, and thus these compounds may indirectly affect cellular metabolism by regulating the cellular responses to glucocorticoids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.