Abstract

Gamma oscillations (30–80 Hz) are well-known for their role in cortical signal transmission and cognitive brain functions. Aberrant gamma activity has been observed in various neuropsychiatric disorders, but the clinical potential of restoring gamma oscillations via noninvasive brain stimulation has been widely neglected. Only recently, therapeutic effects of gamma entrainment were documented in mouse models of Alzheimer's dementia (AD) using rhythmic sensory stimulation. In the present review, we first summarize the current status of the research on gamma entrainment in mouse models of AD and human AD patients. Then, we suggest transcranial alternating current stimulation (tACS) as an alternative brain stimulation technique and review the recent literature on the effects of gamma tACS in healthy volunteers and neuropsychiatric diseases to document the efficacy of gamma tACS in improving cognitive functions. We discuss several advantages of tACS compared to rhythmic sensory stimulation for the entrainment of gamma oscillations in the human brain and emphasize the need for more clinical studies applying tACS to drive gamma oscillations and, in turn, to improve cognitive functioning not only in AD but also in patients suffering from other neuropsychiatric disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call