Abstract
To assess the actions of thiopental at the spinal dorsal horn level, we examined the effects of thiopental using the whole cell patch-clamp technique on mechanically dissociated rat spinal dorsal horn neurons. Thiopental, at large concentrations, elicited a current (I(Thio)) through activation of chloride conductance, and its threshold concentration was approximately 50 microM. I(Thio) was sensitive to bicuculline, a gamma-aminobutyric acid (GABA)A receptor antagonist, but not to strychnine, a glycine receptor antagonist. At a clinically relevant concentration (30 muM), thiopental markedly enhanced the peak amplitude of a subsaturating GABA-induced current (I(GABA)) but not that of a saturating GABA-induced current. Furthermore, thiopental prolonged the time constants of both desensitization and deactivation of I(GABA). At a large concentration (300 muM), it inhibited the peak amplitude of I(GABA), which may be the result of open-channel blockade. In addition, at 30 microM, thiopental increased the duration and decreased the frequency of GABAergic miniature inhibitory postsynaptic currents. These results indicate that thiopental enhances GABAergic inhibitory transmission and suggest that GABA(A) receptors in the spinal cord are a potential target through which thiopental causes immobility and depresses the response to noxious stimuli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.