Abstract

Repeat proteins have unique elongated structures that, unlike globular proteins, are quite modular. Despite their simple one-dimensional structure, repeat proteins exhibit intricate folding behavior with a complexity similar to that of globular proteins. Therefore, repeat proteins allow one to quantify fundamental aspects of the biophysics of protein folding. One important feature of repeat proteins is the interfaces between the repeating units. In particular, the distribution of stabilities within and between the repeats was previously suggested to affect their folding characteristics. In this study, we explore how the interface affects folding kinetics and cooperativity by investigating two families of repeat proteins, namely, the Ankyrin and tetratricopeptide repeat proteins, which differ in the number of interfacial contacts that are formed between their units as well as in their folding behavior. By using simple topology-based models, we show that modulating the energetic strength of the interface relative to that of the repeat itself can drastically change the protein stability, folding rate, and cooperativity. By further dissecting the interfacial contacts into several subsets, we isolated the effects of each of these groups on folding kinetics. Our study highlights the importance of interface connectivity in determining the folding behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.