Abstract

Application of an aqueous Zn-ion battery is plagued by a water-induced hydrogen evolution reaction (HER), resulting in local pH variations and an unstable electrode-electrolyte interface (EEI) with uncontrolled Zn plating and side reactions. Here, 4-methyl pyridine N-oxide (PNO) is introduced as a redox non-innocent additive that comprises a hydrophilic bipolar N+-O- ion pair as a coordinating ligand for Zn and a hydrophobic ─CH3 group at the para position of the pyridine ring that reduces water activity at the EEI, thereby enhancing stability. The N+-O- moiety of PNO possesses the unique functionality of an efficient push electron donor and pull electron acceptor, thus maintaining the desired pH during charging/discharging. Intriguingly, replacing ─CH3 (electron pushing +I effect) by ─CF3 group (electron pulling ─I effect), however, does not improve the reversibility; instead, it degrades the cell performance. The electrolyte with 2m ZnSO4 + 15mm PNO enables symmetric cell Zn plating/stripping for a remarkable > 10 000h at 0.5mA cm-2 and exhibits coulombic efficiency (CE) ≈99.61% at 0.8mA cm-2 in Zn/Cu asymmetric cell. This work showcases the immense interplay of the electron push-pull of the additives on the cycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.