Abstract

Small molecules can inhibit cellular processes such as replication and transcription by binding to the promoter regions that are prone to form G-quadruplexes. However, since G-quadruplexes exist throughout the human genome, the G-quadruplex binders suffer from specificity issues. To tackle this problem, a G-quadruplex binder (Pyridostatin, or PDS) is conjugated with a ligand (Polyamide, or PA) that can specifically recognize DNA sequences flanking the G-quadruplex forming region. The binding mechanism of this hybrid ligand to the hTERT promoter region (hTERT 5-12) is then elucidated using optical tweezers. During mechanical unfolding processes, different intermediate structures of hTERT 5-12 in presence of PDS, PA, or PA-PDS conjugateare observed. These intermediate structures are consistent with two folding patterns of G-quadruplexes in the hTERT 5-12 fragment. While the duplex DNA binder PA facilitates the folding of a hairpin-G-quadruplex structure, the PDS assists the formation of two tandem G-quadruplexes. Both replication stop assay in vitro and dual luciferase assay in vivo established the effectiveness of the PA-PDS conjugate for hTERT 5-12 targeting. We expect such a ligand dependent folding dynamics will provide guidelines to the development of drugs that not only target hTERT expressions, but also other oncogenes via interactions with specific G-quadruplex structures formed in their promotor regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.