Abstract

To modulate intracellular ceramide levels and lower the apoptotic threshold in multidrug-resistant ovarian adenocarcinoma, we have examined the efficacy and preliminary safety of tamoxifen coadministration with paclitaxel in biodegradable poly(ethylene oxide)-modified poly(epsilon-caprolactone) (PEO-PCL) nanoparticles. In vitro cytotoxicity and proapoptotic activity of paclitaxel and tamoxifen, either as single agent or in combination, was examined in wild-type (SKOV3) and MDR-1-positive (SKOV3TR) human ovarian adenocarcinoma cells. Subcutaneous SKOV3 and SKOV3TR xenografts were established in female nu/nu mice, and this model was used to evaluate the antitumor efficacy and preliminary safety. Paclitaxel (20 mg/kg) and tamoxifen (70 mg/kg) were administered i.v. either as a single agent or in combination in aqueous solution and in PEO-PCL nanoparticles. In vitro cytotoxicity results showed that administration of paclitaxel and tamoxifen in combination lowered the IC50 of paclitaxel by 10-fold in SKOV3 cells and by >3-fold in SKOV3TR cells. The combination paclitaxel/tamoxifen co-therapy showed even more pronounced effect when administered in nanoparticle formulations. Upon i.v. administration of paclitaxel/tamoxifen combination in PEO-PCL nanoparticle formulations, significant enhancement in antitumor efficacy was observed. Furthermore, the combination paclitaxel/tamoxifen therapy did not induce any acute toxicity as measured by body weight changes, blood cell counts, and hepatotoxicity. The results of this study show that combination of paclitaxel and tamoxifen in biodegradable PEO-PCL nanoparticles can serve as an effective clinically translatable strategy to overcome multidrug resistance in ovarian cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.