Abstract

We study the amplitude modulation of low-frequency, long-wavelength electrostatic drift-wave envelopes in a nonuniform quantum magnetoplasma consisting of cold ions and degenerate electrons. The effects of tunneling associated with the quantum Bohm potential and the Fermi pressure for nonrelativistic degenerate electrons, as well as the equilibrium density and magnetic field inhomogeneities are taken into account. Starting from a set of quantum magnetohydrodynamic equations, we derive a nonlinear Schrödinger equation (NLSE) that governs the dynamics of the modulated quantum drift-wave packets. The NLSE is used to study the modulational instability (MI) of a Stoke's wave train to a small plane wave perturbation. It is shown that the quantum tunneling effect as well as the scale length of inhomogeneity plays crucial roles for the MI of the drift-wave packets. Thus, the latter can propagate in the form of bright and dark envelope solitons or as drift-wave rogons in degenerate dense magnetoplasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call