Abstract
Toll-like receptors (TLRs) are members of the interleukin-1 receptor family and are involved in the responsiveness to pathogen-associated molecular patterns. Recent studies have demonstrated that TLRs are activated by endogenous signals, such as heat shock proteins and oxidative stress, which may contribute to congestive heart failure. Oxidative stress is one of the major factors in doxorubicin (Dox)-induced cardiac dysfunction. Thus, we hypothesized that TLRs contribute to the pathogenesis of Dox-induced cardiac dysfunction. Cardiac dysfunction was induced by a single injection of Dox (20 mg/kg IP) into wild-type (WT) mice and TLR-2-knockout (KO) mice. Five days after Dox injection, left ventricular dimension at end-diastole was smaller and fractional shortening was higher in KO mice compared with WT mice (P<0.01). Nuclear factor-kappaB activation and production of proinflammatory cytokines after Dox were suppressed in KO mice compared with WT mice (P<0.01). The numbers of TUNEL-positive nuclei and Dox-induced caspase-3 activation were less in KO mice than in WT mice (P<0.01). Survival rate was significantly higher in KO mice than in WT mice 10 days after Dox injection (46% vs 11%, P<0.05). These findings suggest that TLR-2 may play a role in the regulation of inflammatory and apoptotic mediators in the heart after Dox administration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.