Abstract

Topo IIalpha (topoisomerase IIalpha) is a major target of several commonly used anticancer drugs and is subject to down-regulation at the transcriptional level in some drug-resistant cell lines and tumours in response to chemotherapy. Clinical resistance to such drugs has been correlated with down-regulation of topo IIalpha at transcription in some drug-resistant cell lines and tumours. Putative binding sites for a variety of transcription factors, including Sp1 (specificity protein 1) and NF-Y (nuclear factor Y) have previously been identified in the topo IIalpha promoter, but their functional significance and interactions have not been described following exposure to anti-cancer drugs. The binding of these factors to specific putative regulatory elements in the topo IIalpha promoter was studied using electrophoretic-mobility-shift assays. Sp1 was found to bind strongly to both distal and proximal GC-rich elements and NF-Y to ICB1 (the first inverted CCAAT box). The functional significance of transcription-factor binding was studied using transient transfection of HeLa cells using a luciferase reporter driven by a 617-bp minimal promoter containing point mutations in putative regulatory elements. Sp1 and NF-Y were both found to be transcriptional modulators with activator or repressor functions depending on protein/DNA context. Moreover, a functional interaction between Sp1 and NF-Y bound at proximal elements was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.